
Volume 13, (1994) number 5 pp. 305-314

Contextual Animation of Gestural Commands

G. Kurtenbach*, T. P. Moran*, and W. Buxton‡†

* Xerox Palo Alto Research Center, Palo Alto, California, USA
‡University of Toronto, Toronto, Ontario, Canada

Abstract
Drawing a mark can be an efficient command input technique when using a pen-based computer. However,
marks are not intrinsically self-explanatory as are other interactive techniques such as buttons and menus.
We present design principles for interaction mechanisms which make marks self explanatory for novices but
still allow experts to use efficient command marks. The key notion is that use of the explanation mechanism
physically trains a novice to use the efficient command marks. Two novel interaction mechanisms we have
developed using these principles are presented.

Keywords: Pen input; Gestures; Marks; Animation

1. Introduction

It is a very common belief that pen-based computers
will be easy to use because “they operate like pen and
paper”. Essentially, pen-based computers try to take
advantage of a user’s existing drawing and handwriting
skills. The marks made with an electronic pen can be
recorded as “ink”, which is coming to be accepted as
new basic kind of data. In addition to creating material
to be seen and read, people also use marks to designate
actions on the material - from informal marks such
as scratch-outs and arrows to more formal notations
such as proof-reading marks. Electronically-produced
marks can also be interpreted, and these marks are
usually called gestures in the user-interface community.
Gestures are thus iconic commands from the user to the
system.

It would seem that gestures would be easy to learn
and use. However, one needs only to use any of the cur-
rent crop of pen-based computers to experience serious
difficulties. Recently, we assessed a new, sophisticated
note-taking application that was touted as being natural
and easy to use (and, in the press, as a real breakthrough
in pen computing). When we sat down to learn and use
the system, we expected this to be easy. After only a † † G. Kurtenbach and W. Buxton are now at Alias Research
Inc. Toronto, Ontario, Canada.

short while we found ourselves asking questions like:
“What gesture do I make to undo something?” “Are
there commands available with gestures that are not in
the menus?” “Why isn’t it interpreting my X-gesture
as a delete gesture?” “Does it understand the standard
proof-reading marks?”

This situation is reminiscent of old-fashioned textual
command language interfaces, such as the UNIX shell or
MS-DOS, where the user is confronted with analogous
questions. Thus, the issues behind the questions seem to
be general to all command languages, be they textual or
iconic:

Functionality - What functions does the system provide
(in the form of commands)?

Naming - Given a function, what is the name or shape
of the command (so that it can be issued)?

Context - Given a command, when and where in the
system is it available to be used?

Method - How are the various arguments and param-
eters of a command specified (so that it can be applied
to specific material in a specific way)?

There are several different strategies that the user can
employ to answer these questions. Let us consider three :
training, guessing, and learning-by-doing.

Training Strategy - The user can set aside a chunk of
time to learn the system-take a course, read the manual,

© The Eurographics Association 1994. Published by Blackwell Publishers, 108 Cow-
ley Road, Oxford OX4 1JF, UK and 238 Main Street, Cambridge, MA 02142, USA.

306 G. Kurtenbach, et al. / Contextual Animation of Gestural Commands

follow an on-line tutorial, etc. One problem with this
strategy is that it is not tied to any particular task the
user needs to do. During training, the user, in effect,
memorizes the system ahead of time. Later, when it is
time to do a particular task, the user may have forgotten
many of the crucial details and will end up posing the
same questions anyway. The goal of most pen-based
systems is to be “natural” so as not to require up-front
training, the ideal being that one can just “walk up and
use” them. Therefore, we want to minimize the need for
training.

Guessing Strategy - The user can forego training and
just guess how to issue commands. This depends on the
commands being mnemonic. For verbal commands, it
has been shown that mnemonics are unreliable; com-
mand naming behaviour of individuals is extremely
variable1. But gestures are supposed to be intuitive
and/or familiar. Many researchers have argued that
users commonly agree on certain gestures for certain
operations2-4. However, beyond a small set of common
operations (e.g. select, delete, move), there are few com-
mon conventions (mainly because gestural systems are
so new). Thus, guessing by itself is inadequate.

Learning- While-Doing Strategy - A broader strategy
is for the user to seek help in various ways while doing
particular tasks and, in the process, learn more and more
about the system. Thus the need for (and time taken in)
seeking help is continually reduced. The critical thing to
make this work is to minimize the amount of attention
the user has to divert from the performance of the task
in order to seek help (training and guessing are at the
two extremes).

We can view many interface techniques of modern
graphical user interfaces as supporting a learning-while-
doing strategy. Menus of commands and panels of but-
tons and icons tell the user what functions are available
and directly provide the means to invoke them. They
allow users to recognize functions rather than having
to recall them from memory. Two examples are menus
and dialogue boxes. Menus that pop up when certain
objects are selected and pull-down menus with greyed
out items show users the context in which commands
are available. Dialogue boxes give users simple methods
for specifying parameters to commands.

What we propose is to extend these graphical user
interface techniques with two specific goals in mind:
(1) supporting the process of learning-while-doing and
(2) dealing with the particular features of gestural com-
mands. A couple of examples: We will consider tech-
niques for inducing rehearsal, which is important to
amplify the learning process. Gestures have the feature
that they are drawn within the materials they are oper-
ating on (whereas textual commands, including menus,
are issued from outside of the materials). Thus we have

to provide guidance for how to draw gestures within the
spatial context of the current materials. In this paper
we define three user-interface design principles to sup-
port interactively learning and using gestures. We then
describe two interaction techniques we have developed
based on these design principles. The first technique sup-
ports learning and using the subclass of zig-zag-shaped
gestures. The second technique deals with the general
case of learning and using arbitrary-shaped gestures.

2. Design Principles

The three design principles to support learning and using
gestures are revelation, guidance, and rehearsal. Other
researchers have described similar general principles5, 6 ,

and many systems have interactions which follow some
of these general principles. Our definitions are oriented
to apply the principles to gestures.

Revelation - The system should interactively reveal
information about what commands are available and
how to invoke them.

Gestures are not revealed because the user must re-
call them from memory. Menus and buttons, however,
reveal the function and names of commands. They do
not reveal the method for issuing the command. What
menu systems do is to provide a common set of general
methods (such as pointing, dragging, double clicking),
which must be learned a priori. The Macintosh com-
puter, for example, uses this technique. The intention is
that with this small set of skills a user can start inter-
actively exploring and learning about the remainder of
the system.

The interaction techniques described in this paper use
this type of design. A user must be informed, a priori,
that in order to reveal the commands associated with an
object the pen must be pressed over an object and held
still for a fraction of second. We call this “press and
wait for more information”. Once users know this, they
can get further instructions interactively from the sys-
tem. This allows users to interactively learn about what
functions can be applied to various displayed objects by
pressing and waiting on the objects for menus.

Guidance - The way in which revelation occurs should
guide a user through the method for specifying the
complete command in any specific situation.

An example is selection from a hierarchic menu. In
this case, selecting an item guides a user to the next
menu. The critical point in these systems is that get-
ting guidance on how to specify a command does not
interrupt the specification process. On the other hand,
a system like the on-line manual pages in UNIX vio-
lates the principle of guidance, because the user must
terminate or at least suspend the act of specifying the
command in order to get help.

© The Eurographics Association 1994

G. Kurtenbach, et al. / Contextual Animation of Gestural Commands 307

Rehearsal - The way guidance is provided should
require a physical rehearsal of the way an expert would
issue the command.

The goal of rehearsal is to develop expert skills in
a novice, in order to support the efficient transition
from novice to expert performance. Many interaction
techniques support rehearsal. When the action of the
novice and the expert are the same for a particular
function, we can say that rehearsal takes place. For
example, novices may draw lines, move icons, or select
from menus using the same actions as an expert when
there is one and only one way of issuing the command.
In many cases, the single way of issuing the command
may be suitable for both the novice and expert.

There are also many situations, however, where a sin-
gle method for invoking a command is not sufficient. The
popularity of “accelerator techniques” is proof of this.
Typically, interfaces provide two modes of operation.
The first mode, designed for novices, provides revelation.
Conventional menu-driven interactions are an example
of this. The revealing component of this mode is empha-
sized over efficiency of interaction, because novices are
more concerned with how to do things rather than how
quickly things can be done. The second mode, designed
for experts, typically allows terse, non-prompted interac-
tions. Command-line interfaces and accelerator keys are
examples of this mode. However, usually there is a dra-
matic difference between novice and expert behaviour
at the level of physical action. For example, a novice
uses the mouse to select from a menu whereas an expert
presses an accelerator key. Thus, in these cases, novice
actions are not a rehearsal for expert performance.

It is critical that rehearsal be unavoidable. For ex-
ample, the Macintosh supports novices by providing
menus and supports experts by providing menu accel-
erator keys. The transition between novice and user is
supported by the user being reminded of the keystrokes
associated with menu items every time a menu is dis-
played. This is done by having the names of the ac-
celerator keys appear next to menu items in the menu.
However, actually using an accelerator key is avoid-
able. The user can always just select from the menu.
Furthermore, this is easiest because the user is already
displaying the menu. The end result is that accelerator
keys are sometimes not used even after extensive expo-
sure to the menu. Our principle of rehearsal is intended
to remedy these situations.

The intention of the three design principles is to reduce
this discrepancy in action without reducing the efficiency
of the expert and ease of learning for the novice. The
basic actions of the novice and expert should be the
same. It is hoped that, as novice performance develops,
the skills that lead to expert performance will develop
in a smooth and direct manner. We next describe two

Figure 1: Marking menus permit two different ways to
select menu items. Using method (a), hierarchic radial
menus can be sequentially displayed and selections made.
Method (b) uses a mark (gesture) to make the same se-
lection.

interaction techniques that apply the design principles
to gestures.

3. Marking Menus

Rather than trying to initially solve the general prob-
lem of providing revelation, guidance and rehearsal for
any type of gesture, we asked ourselves if there were
subclasses of gestures which simplified the problem.

With this goal in mind we developed an interaction
technique called marking menus. Marking menus pro-
vide revelation, guidance, and rehearsal for zig-zag types
of gestures. This is done by integrating pop-up radial
menus and zig-zag gestures. In effect, zig-zag gestures
are the by-product of selection from radial menus. This
works as follows: A novice user presses down on the
screen with the pen and waits for a short interval of
time (approximately 1/3 second). A radial menu7, 8 then
appears directly under the tip of the pen. A user then
highlights an item by keeping the pen pressed and mak-
ing a stroke towards the desired item. If the item has no
sub-menu, the item can be selected by lifting the pen.
If the item does have a sub-menu, it is displayed. The
user then continues, selecting from the newly displayed
sub-menu. Figure 1 (a) shows an example. Lifting the
pen will cause the current series of highlighted items
to be selected. The menus are then removed from the
screen. At any time a user can indicate “no selection” by
moving the pen back to the center of the menu before
lifting, or change the selection by moving the pen to
highlight another item before lifting. A user can also
“back-up” to a previous menu by pointing to its center.

The other (and faster) way to make a selection is by
drawing a gesture. A gesture can be drawn by pressing
the pen down and immediately moving. The shape of
the gesture dictates the particular series of items selected
from the menu hierarchy. Figure 1 (b) shows an example.

© The Eurographics Association 1994

308 G. Kurtenbach, et al. / Contextual Animation of Gestural Commands

menu hierarchy mark set

Figure 2: A n example o f a radial menu hierarchy and
the marks that select f rom it. Each item in the numeric
menu has a submenu consisting o f the items a, b, c and d.
A mark’s label indicates the menu items it selects. A dot
indicates the starting point o f a mark.

In effect, the menu reveals the commands associated
with a vocabulary of zig-zag gestures. Figure 2 shows an
example of a zig-zag gesture vocabulary and the menu
that reveals them.

Marking menus adhere to the design principles as fol-
lows: Revelation is provided by the pop-up menu (the
novice can see what commands are available). Guidance
is provided by the system giving the user feedback and
additional menu items as the menu is traversed. Re-
hearsal is provided by the physical movement involved
in selecting an item from the menu being identical to the
movement required to make the gesture corresponding
to that item.

We have extensively user tested marking menus and
have found that they are used as designed. Novices
pop-up the menus but with experience learn to use the
gesture (i.e., they become experts). Drawing a gesture
has been show to be dramatically faster than traditional
menu selection techniques. See Kurtenbach’s work9 for
an in-depth analysis of marking menus.

4. The Crib/Sheet Animator

Can an interaction technique similar to marking menus
be designed for other types of gestures? In other words,
can the design principles be applied to the general case?
We refer to these other kinds of gestures as iconic ges-
tures (although the meanings of these gestures may not
be strictly based on iconic shape) and we refer to mark-
ing menu’s zig-zag gestures as menu gestures. Thus the

Figure 3: A n application called Tivoli, running on Live-
board, emulates a whiteboard but also allows drawings to
be edited, saved and restored.

question is : can revelation, guidance and rehearsal be
provided for iconic gestures?

In order to investigate this question we decided to take
an existing pen-based application that used iconic ges-
tures and attempted to design an interaction mechanism
that would provide revelation, guidance and rehearsal
for those gestures. The test bed for this design exper-
iment was an electronic whiteboard application called
Tivoli10. Tivoli is intended to be used in collaborative
meeting situations, much in the same way that a tradi-
tional whiteboard is used. Tivoli runs on a large vertical
display, called Liveboard, that can be written on with
an electronic pen. Much like a whiteboard, several peo-
ple can stand in front of a Liveboard and write, erase,
gesture at, and discuss hand drawn items. Handwriting
and drawings also can be edited by a combination of
direct manipulation commands (i.e. buttons, menus, etc.)
and iconic gestures. Figure 3 shows Tivoli and Figure 4
shows the types of iconic gestures used.

4.1. Problems with the Marking Menu Approach

Overlap - Suppose we strictly applied the marking menu
design to these gestures. Essentially, a marking menu
displays the various ways a user could move the pen to
issue a command. Figure 5 shows the result of applying
this approach to some of the gestures in Figure 4. When
a user presses the pen at a location, the system displays
the various ways a user could move the pen by displaying
example gestures. As Figure 5 shows, gestures overlap
and can cause confusion. Part of the problem is that
iconic gestures are not suitable for displaying in this
manner. Menu gestures, however, are suitable because
of their directional and segmented nature. Only the first
segment of the zig-zag gesture needs to be displayed. The

© The Eurographics Association 1994

G. Kurtenbach, et al. Contextual Animation of Gestural Commands 309

Figure 4: The basic gestures used in Tivoli.

Figure 5: Overlap causes confusion when using the mark-
ing menu approach to reveal other types of gestures. Here
we display the commands available when starting a ges-
ture from a clear spot in the drawing region of Tivoli.

remaining segments of the gesture can be incrementally
displayed as the menu is traversed.

Not enough information - Another problem with a
display like Figure 5 is that it gives little contextual
information. For example, the important thing about
the “Select” gesture is that it should encircle objects and
the shape of the circle can vary. This type of information
is not shown in Figure 5.

The meaning of several iconic gestures in Tivoli is
determined not only by the shape of the gesture but
also by the context in which the gesture is made. For ex-
ample, a straight line over a bullet-point moves an item
in a bullet-point list, while a straight line in a margin
scrolls the drawing area. These types of inconsistencies
can potentially confuse the user. To avoid these prob-
lems, we wanted to provide context sensitive information
about which gestures a user can make over what objects.
Informally, we wanted a user to be able to answer the
question: “what gestures can I draw on this object or
location?”. Since marking menus are sensitive to con-
text (i.e., the contents of a menu may vary depending

on where it is popped up), we hoped that some simi-
lar mechanism could be designed for iconic gestures in
Tivoli.

For gesture sets in general, besides Tivoli’s iconic ges-
ture set and the marking menu gesture set, the following
characteristics may contribute to a gesture’s meaning
and this type of information therefore needs to be re-
vealed :

Shape - This is the case where a particular shape is an
icon for a certain command. For example, the “pigtail”
shape is an icon for the delete command.

Direction - Sometimes the direction of a gesture affects
its meaning. For example an up-stroke means “scroll up”
while a down-stroke means “scroll down”. The shape of
the gesture is basically the same but the direction or

Location of features - The location of features of a
gesture can affect its meaning. For example, the sum-
mit of the “Type-in’’ point gesture, shown in Figure 5,
determines the exact placement of the text cursor.

Dynamics of drawing - How a gesture is drawn can
affect its meaning. For example, a flick could mean
“scroll to the end of document”, while a slow up-stroke
could mean “scroll to the next page”.

orientation of the gesture has meaning.

4.2. Solutions

Crib-sheets - Interactive crib-sheets reveal gestures with-
out the overlap problem. When the user requires help, a
crib-sheet can be popped up which shows the available
gestures and what they mean. The user can then dismiss
the crib-sheet and make a gesture. Other systems have
used mechanisms that are similar to crib-sheets (e.g.,
XButtons11 and Microsoft’s Windows for Pen Comput-
ing). Crib-sheets can be as succinct as a simple list of
named gestures or as elaborate as multi-page explana-
tions of the gestures in great detail. Thus a crib-sheet
could contain complete information on all the charac-
teristics of a gesture. However, since crib-sheets are for
reminding and guidance, they are usually succinct.

Figure 6 shows the crib-sheet technique we designed
for Tivoli. The design works as follows. Similar to a
marking menu, if one doesn’t know what gestures can be
applied to a certain object or location on the screen, one
presses-and-waits over the object for more information,
rather than drawing a gesture. At this point, rather
than a menu popping up as in the marking menu case,
a crib-sheet is displayed. The crib-sheet displays the
names of the functions that are applicable to the object
or location, and example gestures. If this is enough
information, a user can draw one of the gestures in the
crib-sheet (or take any other action) and the crib-sheet
automatically disappears. If the pen i s released without

© The Eurographics Association 1994

310 G. Kurtenbach, et al. / Contextual Animation of Gestural Commands

Figure 6: Revealing iconic gestures in Tivoli: The user
has selected the word “Tea” by circling it. To reveal what
functions can be applied to the selection, the user presses-
and-waits within the selection loop. A crib-sheet pops up
indicating the context (“In a selection”) and the available
functions and their associated gestures.

drawing a gesture, the crib-sheet remains displayed until
the next occurrence of a pen press followed by a pen
release or a press-and-wait event.

This design has several important features which dis-
tinguish it from a pop-up menu. First, the system dis-
plays the crib-sheet some distance away from the pen tip
so that the crib-sheet does not occlude the context. This
leaves room for a user to draw a gesture. Second, a user
must draw a gesture to invoke a command. For exam-
ple, a user cannot select the delete button to perform a
deletion. The user must draw a delete gesture to perform
a deletion. Finally, the significance of the location of the
pen tip is displayed at the top of the crib-sheet (i.e., in
Figure 6 “In a selection” is displayed at the top of the
crib-sheet). This is useful for revealing the meaning of
different locations and objects on the screen.

This design obeys the principles of revelation, guid-
ance, and rehearsal. The crib-sheet provides revelation,
and a user can use the examples as guidance when draw-
ing. Rehearsal is enforced because a user must draw a
gesture to invoke a command rather than pressing on a
crib-sheet item.

Animated, annotated demonstrations - While the crib-
sheet does reveal contextual information about gestures,
it still lacks certain types of information. For example,
one static example of a gesture relays little information
about variations and features of a gesture. It has been
shown that people need good examples to help visualize
procedures12. Ideally a demonstration of the gesture in
context should be provided, similar to what one receives

when an expert user demonstrates a command. The
tutorial program in Windows for Pen Computing works
like this. In the tutorial, a user is shown how gestures
are made by animated examples.

The idea of animated help in direct manipulation
interfaces is not new13-15. Our system is unique in that
it uses animated help for pen-based interactions.

The examples in the crib-sheet could be animated to
show how to draw a gesture, variations on a gesture,
and the various features of a gesture. However, crib-
sheets illustrate gestures outside of the context of the
material that the user is working on, and this can make
it difficult to see how the gesture applies to the context.
Marking menus, on the other hand, have the advantage
of showing the available gestures directly on top of the
object being worked on.

To solve this problem we extended the function of
the crib-sheet by adding animations of gestures which
take place in context. If the crib-sheet does not pro-
vide sufficient information, a demonstration of a gesture
can be triggered by pressing the “demo” button on the
crib-sheet. The demonstration of the gesture begins at
the location originally pressed. The demonstration is an
animation of the drawing of the gesture which is ac-
companied by text describing the special features of the
gesture (see Figure 7) .

There are several important aspects to this design:

Gestures are shown in context. The animation of the
gesture is full size, and emanates from the exact loca-
tion originally pressed on by the user.
Variations in gestures are shown by multiple anima-
tions. Usually, two examples are enough.
Information about features or semantics of a gesture
is provided by annotations. (e.g., in Figure 7 “A pig-
tail deletes the selected objects.”). In addition, features
of the application can be displayed. For example, in
Tivoli scrolling gestures can only be drawn in the
margins of the drawing area, but the borders of the
margins are not visible (this was done to keep the
drawing area uncluttered). In situations like this, the
animation can display these features to clarify matters.
Annotations appear in sequence during a gesture’s an-
imation, and they are timed to remain on the display
long enough for the user to read them.
Animation can be controlled. A long series of anima-
tions takes quite a bit of time and this can be tedious
for the user. By pressing a button in the crib-sheet, in-
dividual animations of the gestures can be started or
stopped. Pressing the “Dismiss” button will stop the
animation and removes the crib-sheet. The animation
will freeze if a user begins drawing a gesture (so a
user can trace the animated gesture). As in the case of
the crib-sheet by itself, the moment a user completes

© The Eurographics Association 1994

G. Kurtenbach, et al. / Contextual Animation of Gestural Commands 311

Figure 7: A demonstration o f a particular function can be attained by pressing its icon. In (1) the user presses on the
delete icon for more information. This triggers an animated demonstration o f the gesture with text annotation to explain
its features. This is shown in (2), (3) and (4). In (5), the user traces along the example gesture to invoke the function.
When the pen is lifted, the action for the gesture is carried out, and the crib-sheet and animation disappear (shown in
(6)).

© The Eurographics Association 1994

312 G. Kurtenbach, et al. / Contextual Animation of Gestural Commands

a gesture, the crib-sheet is removed and the animation
terminates.
The user is not required to make a gesture from the
crib-sheet. The user is free to perform any gesture
at any location on the screen while the animation
is running. The user can also choose to not draw a
gesture by tapping the pen against the screen. This
removes the animation and crib-sheet.

4.3. Implementation

Our crib-sheet/animation is implemented so it is easy
for an interface programmer to use. To produce crib-
sheets and animations Tivoli interacts with a software
module called the animator. The animator accesses a
Gesture Animation Database (GAD). The GAD contains
descriptions of examples of gestures grouped by context
(see Figure 8). When the user presses-and-waits, Tivoli
calls the animator with a description of the current
context (e.g. “In a selection”). The animator then selects
the gestures to be animated based on context, constructs
and displays the crib-sheet, and animates the gestures at
the user’s request.

GAD is constructed by first hand-drawing the gesture
examples and annotations in Tivoli, then placing these
into GAD. Annotations are then labeled by where and
when they should occur in the animation cycle (e.g.,
“start” and “end”). A gesture is a sequence of x and y
coordinates which is animated by incrementally display-
ing the gesture. When animating a gesture the animator
uses the same drawing dynamics as the original hand-
drawing. In this way, dynamics of drawing can be re-
vealed and the speed of an animation can be controlled
by the constructor of the examples. The pacing of the
animation of text annotations is determined by length
of text: after an annotation is displayed the animator
pauses for an amount of time that is proportional to the
length of the text before continuing with the rest of the
animation. This gives a user time to read the annotation
and then watch the rest of the animation.

A key feature to this design is that extra examples of
the same gesture can be placed in GAD and tagged for
special purposes. If an example is tagged as “variation”,
the animator animates this example along with the orig-
inal example of the gesture. In this way, variations on
a gesture can be shown to the user. When the animator
retrieves the examples from GAD, example gestures are
shrunk down to be displayed in the buttons of the crib-
sheet. We found it convenient to tag certain example
gestures for shrinking as “icon”. If no “icon” example
is found, the animator shrinks the first example gesture
it finds.

Multiple examples of gestures also allow the anima-
tion of gestures in constrained spaces. For example,

Figure 8: A n example of the structure of the Gesture Ani-
mation Database (GAD). Annotated examples of the ges-
tures used for the crib-sheet and animations are grouped
by context and function.

assume that a user invokes the animator near the bot-
tom of the drawing area, and that one of the possible
gestures at that point is a pigtail (delete). At the bottom
of the drawing area, there is no room to draw a pigtail
downwards, but there is room to draw it upwards. Thus,
the animator should show only pigtails that fit in this
location. The solution to this problem is that when the
animator retrieves examples from GAD it looks for ex-
amples that will fit in the location. Thus, GAD should
be set up with several examples of each gesture, so that
the animator can find an example for any location. We
found as little as four different examples were sufficient.
In the event that an example which fits cannot be found,
the animator generates and displays a “no room mes-
sage” (e.g., “not enough room to demo delete here”).
This tends to only happen when there is not enough
room for a user to actually draw the gesture.

Thus we could easily design examples to fit in con-
strained spaces by originally hand-drawing them in those
spaces. For example, we drew instances of pigtails that
fit at the top, bottom, left and right edge of the screen.

© The Eurographics Association 1994

G. Kurtenbach, et al. / Contextual

The animator does not have to be sophisticated at lay-
ing out the animations - the layouts are determined by
the constructor of the examples. The animator need only
check if an example will fit at a certain location. If it
does not fit, it merely looks for another example.

4.4. Usage Experiences

The crib-sheet/animator has been used informally by
several researchers at Xerox PARC. We were able to
provide several examples of every gesture used in Tivoli
in the GAD. Initially, we found that users did not notice
the crib-sheet pop up on the left side of the display. This
was because users were so close to the large display that
the crib-sheet popped up outside their visual focus. We
then added an animation of the crib-sheet expanding
from the point at which press-and-wait occurred. This
helped users notice the display of the crib-sheet.

Users were also able to make use of the crib-
sheet/animator after a brief demo. We found that users
explored the interface by pressing-and-waiting at differ-
ent spots to see what functions where available. We also
observed users tracing the animated gestures. The most
common error involved a user pressing-and-waiting with
the command button pressed, then releasing the button
while watching the animation. The user would then trace
the animated gesture without the command button be-
ing pressed (Tivoli requires a command button on the
pen to be pressed for the system to interpret marks as
gestures not as drawing or hand-writing). Not having
the command button pressed would result in the mark
being drawn but not interpreted. We feel this type of
error may disappear when a user gets into the habit of
holding down the command button to issue a command.
It is also possible to have the system recognize this error
and advise the user to press the command button.

5. Future Work

An obvious next step for future research is formal user
testing of our designs. It would be optimistic of us not
to expect users to have problems with our system. First,
there are many details that users might trip over: are
the menus and buttons labeled meaningfully? Are the
press-and-wait time thresholds correct? We believe the
next step in user testing would be to evaluate some of
these details and refine the content of the animations.

One problem with our current implementation is that,
although animations do appear in context, they do not
“work with” the context. For example, the animation of
a loop being drawn to select objects sometimes doesn’t
enclose any objects. The problem is the animator has
no knowledge about the Tivoli objects underlying the
animation. A more advanced version would extend the
notion of parameterized gestures to allow them to utilize

Animation of Gestural Commands 313

and manipulate Tivoli objects in the current working
context. This would require a much more sophisticated
architecture for the animator. A good starting point is to
build on the work that Sukaviriya and Foley have done
on the generation of parameterizable, context sensitive
animated help for direct manipulation interface15.

6. Summary and Conclusions

Gestures have many advantages but they also have the
disadvantage of not being revealing. To reveal gestures
some sort of interactive mechanism must be used. We
presented the design principles of revelation, guidance
and rehearsal which promote the integration of the in-
teractive mechanism and gestures. The notion is that the
interactive mechanism is intended for the novice while
the gestures are intended for experts. The integration of
the two is intended to support the learning transition
from novice to expert.

We presented two designs that follow these design
principles. Marking menus integrate radial menus and
zig-zag gestures and represent the application of the
design principles to a subclass of gestures. The crib-
sheet/animator represents the application of the design
principles to any type of gesture. We have found in
practice that marking menus are very effective in sup-
porting novices and experts. The fact that the crib-sheet
animator is a workable design proves that the design
principles are generalizable to iconic gestures. Further
design exploration and testing is warranted.

Designing a mechanism to reveal iconic gestures
brings to light many issues concerning the revelation
of gestures. First, revelation can occur at various levels
of detail. The crib-sheet i s the first level: a quick glance
at the icon for the gesture may be sufficient for the
user. An animation is the second level: it requires more
time but provides more information and explanation.
Our design essentially supports a hierarchy of informa-
tion where there is a time versus amount of information
tradeoff.

A hierarchic view of information can also be applied
to the way in which gestures themselves are revealed.
For some gestures, it is sufficient just to show a static
picture of the gesture. For other gestures an annotated
animation is needed before each one can be understood.
Besides an animation, some gestures need to show vari-
ations. Finally some gestures, like menu marks, are best
revealed incrementally. Depending on the characteris-
tics of a gesture, there are different ways of explaining
the gesture. This implies our revelation schemes must
support these different forms of explanation. Marking
menus, crib-sheets, and animations are instances of dif-
ferent forms of explanation. A complete taxonomy of
forms of explanation is future research.

© The Eurographics Association 1994

314 G. Kurtenbach, et al. / Contextual Animation of Gestural Commands

While user testing is needed to refine our design, we 6. B. Shneiderman, Designing the User Interface:
Strategies for Effective Human Computer Inter-
action” Addison-Wesley, Reading Massachusetts
(1987)

N. E. Wiseman, H. U. Lemke, and J. O. Hiles,
“PIXIE: A New Approach to Graphical Man-
machine Communication”, Proceedings of 1969
CAD Conference Southhampton, IEEE Conference
Publication 51, p. 463 (1969)

J. Callahan, D. Hopkins, M. Weiser. and B. Shnei-
derman. “An empirical comparison of pie vs. linear
menus” Proceedings of CHI ‘88, pp. 95-100 (1988)

ing Menus, Ph.D. thesis, University of Toronto,
Toronto, Ontario, Canada (1993)

10. E. R. Pederson, K. McCall, T. P. Moran, and F.
G. Halasz, “Tivoli: An Electronic Whiteboard for
Informal Workgroup Meetings” Proceedings of the
CHI ‘93 Conference on Human Factors in Computing
Systems, ACM, New York, pp. 391-398 (1993)

11. G. G. Robertson, A. D. Henderson Jr., and S.
K. Card, “Buttons as First Class Objects on an
X Desktop” Proceedings of UIST ’ 9 1 Conference,
ACM, New York, pp. 35-44 (1991)

12. H. Lieberman, “An example-based environment for
beginning programmers” AI and Education: Volume
One, Lawler, R. and Yazdani, M., (Ed.), Ablex Pub-
lishing, Norwood NJ, pp. 135-152, (1987)

13. R. Baecker and I. Small, “Animation at the In-
terface” In Laurel, B. (Ed.) The Art of Human-
Computer Interface Design, Addison Wesley, Read-
ing Massachusetts, pp. 251-267 (1990)

14. R. E. Cullingford, M. W. Krueger, M. Selfridge,
and M. A. Bienkowski, “Automated explanations as
a component of a computer-aided design system”
IEEE Transactions on System, Man and Cybernetics,
March/April, pp. 168-181 (1982)

15. P. Sukaviriya and J. D. Foley, “Coupling a UI
framework with automatic generation of context-
sensitive animated help” Proceedings of the ACM
Symposium on User Interface Software and Technol-
ogy ’ 8 8 , ACM, New York pp. 152-166 (1990)

feel that this design supports the desired type of infor-
mation flow. Users can interactively obtain information
on gestures and this information is intended to inter-
actively teach them how to use these gestures like an
expert. No pen-based system that we know of supports
this type of paradigm.

7.

Acknowledgments

We thank the members of the Input Research Group
at the University of Toronto, especially Gary Hardock

erly Harrison for their comments on thesis drafts of this
research. A portion of this work was performed in the
Dynamic Graphics Project laboratory at the University
of Toronto. We gratefully acknowledge the financial sup-
port for the laboratory provided by the Natural Sciences
and Engineering Research Council of Canada, Digital
Equipment Corporation, and Apple Computer.

8.

for his user testing, and George Fitzmaurice and Bev- 9. G. Kurtenbach, The Design and Evaluation of Mark-

References

1. J. M. Carroll, What’s in a name? Freeman, New
York (1985)

C. G. Wolf, “Can People Use Gesture Commands?”
ACM SIGCHI Bulletin, 18, pp. 73-74, Also, IBM
Research report R C 11 867 (1986)

J. D. Gould and J. Salaun, “Behavioral Experiments
in Handmarks” Proceedings of the CHI + GI ’87
Conference on Human Factors in Computing Systems
and Graphics Interface, ACM, New York, pp.175-
181 (1987)

W. Buxton, “The “Natural” Language of Inter-
action: A Perspective on Nonverbal Dialogues”
In Laurel, B. (Ed.) The Art of Human-Computer
Interface Design, Addison Wesley, Reading Mas-
sachusetts, pp. 405-416 (1990)

D. A. Norman and S. W. Draper, User centered sys-
tem design: New perspectives on human-computer in-
teraction, Erlbaum Associates, Hillsdale, NJ (1986)

2.

3.

4.

5.

© The Eurographics Association 1994

	1. Introduction
	2. Design Principles
	3. Marking Menus
	4. The Crib/Sheet Animator
	4.1. Problems with the Marking Menu Approach
	4.2. Solutions
	4.3. Implementation
	4.4. Usage Experiences

	5. Future Work
	6. Summary and Conclusions
	Acknowledgments
	References

