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Abstract
Toolglass widgets are new user interface tools that can appear,
as though on a transparent sheet of glass, between an application
and a traditional cursor.  They can be positioned with one hand
while the other positions the cursor.  The widgets provide a rich
and concise vocabulary for operating on application objects.
These widgets may incorporate visual filters, called Magic Lens
filters, that modify the presentation of application objects to
reveal hidden information, to enhance data of interest, or to
suppress distracting information.  Together, these tools form a
see-through interface that offers many advantages over traditional
controls.  They provide a new style of interaction that better
exploits the user’s everyday skills.  They can reduce steps, cursor
motion, and errors.  Many widgets can be provided in a user inter-
face, by designers and by users, without requiring dedicated
screen space.  In addition, lenses provide rich context-dependent
feedback and the ability to view details and context simultaneous-
ly.  Our widgets and lenses can be combined to form operation
and viewing macros, and can be used over multiple applications.
CR Categories and Subject Descriptors: I.3.6 [Computer
Graphics]: Methodology and Techniques−interaction techniques;
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces−interaction styles; I.3.3 [Computer Graphics]:
Picture/Image Generation−viewing algorithms; I.3.4 [Computer
Graphics]: Graphics Utilities−graphics editors
Key Words: multi-hand, button, lens, viewing filter, control
panel, menu, transparent, macro

1. Introduction
We introduce a new style of graphical user interface, called the
see-through interface.  The see-through interface includes semi-
transparent interactive tools, called Toolglass widgets, that are
used in an application work area.  They appear on a virtual sheet
of transparent glass, called a Toolglass sheet, between the applica-
tion and a traditional cursor.  These widgets may provide a
customized view of the application underneath them, using
viewing filters called Magic Lens  filters.  Each lens is a screen
region together with an operator, such as ‘‘magnification’’  or
‘‘render in wireframe,’’  performed on objects viewed in the
region.  The user positions a Toolglass sheet over desired objects
and then points through the widgets and lenses.  These tools
create spatial modes that can replace temporal modes in user in-
terface systems.

Two hands can be used to operate the see-through interface.  The
user can position the sheet with the non-dominant hand, using a
device such as a trackball or touchpad, at the same time as the
dominant hand positions a cursor (e.g., with a mouse or stylus).
Thus, the user can line up a widget, a cursor, and an application
object in a single two-handed gesture. 

A set of simple widgets called click-through buttons is shown in
figure 1.  These buttons can be used to change the color of objects
below them.  The user positions the widget in the vicinity and
indicates precisely which object to color by clicking through the
button with the cursor over that object, as shown in figure 1(b).
The buttons in figure 1(c) change the outline colors of objects.  In
addition, these buttons include a filter that shows only outlines,
suppressing filled areas.  This filter both reminds the user that
these buttons do not affect filled areas and allows the user to
change the color of outlines that were obscured.

(a) (b) (c)

Figure 1.  Click-through buttons.  (a)  Six wedge objects.
(b)  Clicking through a green fill-color button. (c) Clicking
through a cyan outline-color button.

Many widgets can be placed on a single sheet, as shown in figure
2.  The user can switch from one command or viewing mode to
another simply by repositioning the sheet.

Figure 2.  A sheet of widgets.  Clockwise from upper left:
color palette, shape palette, clipboard, grid, delete button,
and buttons that navigate to additional widgets.

Widgets and lenses can be composed by overlapping them,
allowing a large number of specialized tools to be created from a
small basic set.  Figure 3 shows an outline color palette over a
magnifying lens, which makes it easy to point to individual edges.  

Figure 3.  An outline color palette over a magnifying lens.

The see-through interface has been implemented in the Multi-De-
vice Multi-User Multi-Editor (MMM) framework5 in the Cedar
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programming language and environment,24 running on the SunOS
UNIX↑compatible operating system on Sun Microsystems
SPARCstations and other computers.  The Gargoyle graphics
editor,20 as integrated into MMM, serves as a complex application
on which to test our interface.  We use a standard mouse for the
dominant hand and a MicroSpeed FastTRAP trackball for the
non-dominant hand.  The trackball includes three buttons and a
thumbwheel, which can be used to supply additional parameters
to the interface.

The remainder of this paper is organized as follows.  The next
section describes related work.  Section 3 describes some
examples of the tools we have developed.  Section 4 discusses
general techniques for using the see-through interface.  Section 5
discusses some advantages of this approach.  Section 6 describes
our implementation.  Sections 7 and 8 present our conclusions and
plans for future work.

Except for figures 12 and 16, all of the figures in this paper reflect
current capabilities of our software.  

2. Related Work

The components of the see-through interface combine work in
four areas: simultaneous use of two hands, movable tools,
transparent tools, and viewing filters.  In this section, we describe
related work in these four areas.

Multi-Handed Interfaces

Several authors have studied interfaces that interpret continuous
gestures of both hands.  In Krueger’s VIDEOPLACEs system,15 the
position and motion of both of a participant’s hands, as seen by a
video camera, determine the behavior of a variety of on-screen
objects, including animated creatures and B-spline curves.
Buxton and Myers discovered that users naturally overlap the use
of both hands, when this is possible, and that, even when the two
hands are used sequentially, there is still a performance advantage
over single-hand use.7,8  

Other work characterizes the situations under which people
successfully perform two-handed tasks. Guiard presents evidence
that people are well-adapted to tasks where the non-dominant
hand coarsely positions a context and the dominant hand performs
detailed work in that context.4  Similarly, Kabbash presents
evidence that a user’s non-dominant hand performs as well or
better than the dominant hand on coarse positioning tasks.13

Our system takes full advantage of a user’s two-handed skills; the
non-dominant hand sets up a context by coarsely positioning the
sheet, and the dominant hand acts in that context, pointing
precisely at objects through the sheet.

Movable Tools

Menus that pop up at the cursor position are movable tools in the
work area.  However, such a menu’s position is determined by the
cursor position before it appears, making it difficult to position it
relative to application objects.

Several existing systems provide menus that can be positioned in
the same work area as application objects.  For example,
MacDraw ‘‘tear-off menus’’  allow a pull-down menu to be
positioned in the work area and repositioned by clicking and
dragging its header.17  Unfortunately, moving these menus takes
the cursor hand away from its task, and they must be moved
whenever the user needs to see or manipulate objects under them.

Toolglass sheets can be positioned relative to application objects
and moved without tying up the cursor.

Transparent Tools

Some existing systems that allow menus to be positioned over the

work area make these menus transparent.  For example, the Alto
Markup system18 displays a menu of modes when a mouse button
goes down.  Each menu item is drawn as an icon, with the space
between icons transparent.  Bartlett’s transparent controls for
interactive graphics use stipple patterns to get the effect of
transparency in X Windows.2

While these systems allow the user to continue to see the
underlying application while a menu is in place, they don’ t allow
the user to interact with the application through the menu and they
don’ t use filters to modify the view of the application, as does our
interface.

Viewing Filters

Many existing window systems provide a pixel magnifier.  Our
Magic Lens filters generalize the lens metaphor to many
representations other than pixels and to many operations other
than magnification.  Because they can access application-specific
data structures, our lenses are able to perform qualitatively differ-
ent viewing operations, including showing hidden information
and showing information in a completely different format.  Even
when the operation is magnification, our lenses can produce
results of superior quality, since they are not limited to processing
data at screen resolution.

The concept of using a filter to change the way information is
visualized in a complex system has been introduced before.25,10,14

Recent image processing systems support compostition of
overlapping filters.23  However, none of these systems combine
the filtered views with the metaphor of a movable viewing lens. 

Other systems provide special-purpose lenses that provide more
detailed views of state in complex diagrams.  For example, a
fisheye lens can enhance the presentation of complicated
graphs.21  The bifocal display22 provides similar functionallity for
viewing a large space of documents.  The MasPar Profiler3 uses a
tool based on the magnifying lens metaphor to generate more
detail (including numerical data) from a graphical display of a
program. 

Magic Lens filters combine viewing filters with interaction and
composition in a much broader way than do previous systems.
They are useful both as a component of the see-through interface
and as a general-purpose visualization paradigm, in which the
lenses become an integral part of the model being viewed.

3. Examples

This section shows several tools that demonstrate features of the
see-through interface.  Because we have implemented primarily in
the graphical editing domain, most of these tools are tailored to
that application.  However, the see-through interface can be used
in a wide variety of other application domains.     

Shape and Property Palettes

Palettes are collections of objects or properties that can be added
to a scene.  Figure 1 showed two widgets that apply color to
shapes.  Similar tools can be designed to apply other graphical
properties, such as type and line styles to an illustration, shading
parameters to a 3D model, or initial values to a simulation.  Figure
4 illustrates a widget containing graphical shapes that can be
‘‘pushed through’’  from the tool into the illustration below.  In
figure 4(a), the user has positioned a shape palette widget (shown
in cyan) over an illustration (shown in magenta).  When the user
clicks on a shape on the tool, a copy of that shape is added to the
illustration.  The widget attaches the copied shape to the cursor
for interactive dragging until the final shape position is achieved
(figure 4(b)).
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(a) (b)

Figure 4.  Shape palette.  (a) Choosing a shape.  (b) Placing
the shape.

Figure 5 shows a design for a property palette for setting the face
of text in a document.  Each face (regular, bold, etc.) has an active
region on the right side of the tool.  Selecting the text displayed in
this region changes its face.

application work area, the cursor and

temporal modes and modes created 
by holding down a keyboard key with

bold
bold italic

italic
regular

spatial modes.
modes can be changed directly in the

Because these spatial

the user’s attention can remain on the

Figure 5.  Font face palette. The word ‘‘directly’’  is being
selected and changed to bold face.

Clipboards

Clipboard widgets pick up shapes and properties from underlying
objects, acting as visible instantiations of the copy and paste keys
common in many applications.  Clipboards can pick up entire
objects or specific properties such as color, dash pattern or font.
They can hold single or multiple copies of an object.  The objects
or properties captured on the clipboard can be copied from the
clipboard by clicking on them, as in the palette tools.

Figure 6 shows a symmetry clipboard that picks up the shape that
the user clicks on (figure 6(a)) and produces all of the rotations of
that shape by multiples of 90 degrees (figure 6(b)).  Moving the
clipboard and clicking on it again, the user drops a translated copy
of the resulting symmetrical shape (figure 6(c)).  Clicking the
small square in the upper left corner of the widget clears the
widget so that new shapes can be clipped.

(a) (b) (c)

Figure 6.  Symmetry clipboard.  (a) Picking up an object.
(b) Rotated copies appear.  (c) The copies are moved and
pasted.

Figure 7 shows an example of a type of clipboard that we call a
rubbing.  It picks up the fill color of an object when the user
clicks on that object through the widget (figure 7(a)).  The widget
also picks up the shape of the object as a reminder of where the
color came from (figure 7(b)).  Many fill-color rubbings can be
placed on a single sheet, allowing the user to store several colors
and remember where they came from.  The stored color is applied
to new shapes when the user clicks on the applicator nib of the
rubbing (figure 7(c)).

(a) (b) (c)

Figure 7.  Fill-color rubbings. (a) Lifting a color. (b) Moving
the clipboard. (c) Applying the color.

Besides implementing graphical cut and paste, clipboards provide
a general mechanism for building customized libraries of shapes
and properties.

Previewing Lenses

In graphical editing, a lens can be used to modify the visual
properties of any graphical object, to provide a preview of what
changing the property would look like.  Properties include color,
line thickness, dash patterns, typeface, arrowheads and drop
shadows.  A previewing lens can also be used to see what an
illustration would look like under different circumstances; for
example, showing a color illustration as it would be rendered on a
black/white display or on a particular printer.  Figure 8 shows a
Celtic knotwork viewed through two lenses, one that adds drop
shadows and one that shows the picture in black and white.  The
achromatic lens reveals that the drop shadows may be difficult to
distinguish from the figure on a black/white display.

Figure 8.  An achromatic lens over a drop shadow lens
over a knotwork.  (Knotwork by Andrew Glassner)

Previewing lenses can be parameterized.  For example, the drop
shadow lens has parameters to control the color and displacement
of the shadow.  These parameters can be included as graphical
controls on the sheet near the lens, attached to input devices such
as the thumbwheel, or set using other widgets.

Selection Tools

Selection is difficult in graphical editing when objects overlap or
share a common edge.  Our selection widgets address this
problem by modifying the view and the interpretation of input
actions.  For example, figure 9 shows a widget that makes it easy
to select a shape vertex even when it is obscured by other shapes.
This tool contains a wire-frame lens that reveals all vertices by
making shape interiors transparent.  Mouse events are modified to
snap to the nearest vertex.

Select

Vertex

(a) (b)

Select

Vertex

(c)

Figure 9.  Vertex selection widget.  (a) Shapes.  (b) The
widget is placed.  (c) A selected vertex.

Figure 10.  The local scaling lens.  (Tiling by Doug Wyatt)
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Figure 10 shows a lens that shrinks each object around its own
centroid.  This lens makes it easy to select an edge that is
coincident with one or more other edges.  

Grids

Figure 11 shows three widgets, each of which displays a different
kind of grid.  The leftmost two grids are rectangular with different
spacings.  The rightmost grid is hexagonal.  Although each grid
only appears when the lens is in place, the coordinates of the grid
are bound to the scene, so that grid points do not move when the
sheet moves.  By clicking on the grid points and moving the
widget, the user can draw precise shapes larger than the widget.
If the sheet is moved by the non-dominant hand, the user can
quickly switch between the grids during an editing motion.

Figure 11.  Three grid tools.

Visualization

Figure 12 illustrates the use of tools and lenses to measure
Gaussian curvature in the context of a shaded rendering of a 3D
model.  The pseudo-color view indicates the sign and relative
magnitude of the curvature,9 and the evaluation tool displays the
value at the point indicated.

2.5

Figure 12.  Gaussian curvature pseudo-color lens with
overlaid tool to read the numeric value of the curvature.
(Original images courtesy of Steve Mann)

4. Using the See-Through Interface

Widgets and lenses are most effective when supported by
appropriate conventions specifying how to position, size,
organize, and customize them.  This section discusses a few of
these issues.

Moving and Sizing the Sheet or the Application

A Toolglass sheet can be moved by clicking and dragging on its
border with a mouse or by rolling the trackball.  The sheet and all
its widgets can stretch and shrink as a unit when the user works a
a second controller such as a thumbwheel.  With these moving
and sizing controls, the user can center a widget on any applica-
tion object and size the widget to cover any screen region.  Large
widgets can be used to minimize sheet motion when applying a
widget to several objects.   A widget that has been stretched to
cover the entire work area effectively creates a command mode
over the entire application.

By clicking a button on the trackball, the user can disconnect the
trackball from the sheet and enable its use for scrolling and
zooming a selected application area.  If a sheet is over this appli-
cation, the user can now move an application object to a widget
instead of moving a widget to an object.  This is a convenient way
to use the see-through interface on illustrations that are too large
to fit on the screen.

Managing Sheets

A typical application will have a large number of widgets in its in-
terface.  To avoid clutter, we need a way to organize these
widgets and sheets.  One approach is to put all of the widgets on a
single sheet that can be navigated by scrolling and zooming.
Perlin and Fox’s paper in these proceedings19 describes tech-
niques for creating and navigating unlimited structures on a single
sheet.  A second approach is to have a master sheet that generates
other sheets.  Each of these sheets could generate more sheets,
like hierarchical menus.  A third technique, used in our prototype,
is to allow a single sheet to show different sets of widgets at dif-
ferent times.  The set to display can be selected in several ways:
the user can click a special widget in the set, like the arrows in
HyperCard,11 that jumps to another set.  In addition, a master
view provides a table of contents of the available sets allowing the
user to jump to any one.  To use different sets simultaneously, the
user creates additional sheets.

Customizing Sheets

Because sheets can contain an unlimited number of widgets, they
provide a valuable new substrate on which users can create their
own customized widgets and widget sets.  In effect, the sheets can
provide a user interface editor, allowing users to move and copy
existing widgets, compose macros by overlapping widgets, and
snap widgets together in new configurations.  Indeed, with the
techniques described in this paper, one Toolglass sheet could even
be used to edit another.

5. Advantages of See-Through Tools

In this section, we describe some advantages we see for using the
see-through interface.  Most of these advantages result from
placing tools on overlapping layers and from the graphical nature
of the interface.

In most applications, a control panel competes for screen space
with the work area of the application.  Toolglass sheets exist on a
layer above the work area.  With proper management of the
sheets, they can provide an unlimited space for tools.  The widgets
in use can take up the entire work area.  Then, they can be
scrolled entirely off the screen to provide an unobstructed view of
the application or space for a different set of widgets.  

The see-through user interface can be used on tiny displays, such
as notebook computers or personal digital assistants, that have
little screen real estate for fixed-position control panels.  It can
also be used on wall-sized displays, where a fixed control panel
might be physically out of reach from some screen positions.
These tools can move with the user to stay close at hand.

A user interface layer over the desktop provides a natural place to
locate application-independent tools, such as a clipboard that can
copy material from one window to another.

These widgets can combine multiple task steps into a single step.
For example, the vertex selection widget of figure 9 allows the
user to turn on a viewing mode (wire-frame), turn on a command
mode (selection), and point to an object in a single two-handed
gesture.

Most user interfaces have temporal modes that can cause the same
action to have different effects at different times.  With our inter-
face, modes are defined spatially by placing a widget and the
cursor over the object to be operated on.  Thus, the user can easily
see what the current mode is (e.g., by the label on the widget) and
how to get out of it (e.g., move the cursor out of the widget).   In
addition, each widget can provide customized feedback for its op-
eration.  For example, a widget that edits text in an illustration can
include a lens that filters out all the objects except text.  When
several widgets are visible at once, the feedback in each one
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serves a dual role.  It helps the user make proper use of the widget
and it helps the user choose the correct widget.

The visual nature of the see-through interface also allows users to
construct personalized collections of widgets as described above.

6. Implementation

This section provides an overview of our implementation of the
see-through interface.

Toolglass Sheets

We describe three Toolglass subsystems: one that handles simul-
taneous input from two pointing devices and updates the screen
after multiple simultaneous changes, one that modifies pointing
events as they pass through widgets, and one that modifies graph-
ical output as it passes up through each widget.

Multi-Device Input and Screen Refresh

Our Toolglass software uses the MMM framework.5  The see-
through interface relies on the following features of MMM.

MMM takes events from multiple input devices, such as the
mouse and trackball, keeps track of which device produced which
event, and places all events on a single queue.  It dequeues each
event in order and determines to which application that event
should be delivered.  MMM applications are arranged in a
hierarchy that indicates how they are nested on the screen.  Each
event is passed to the root application, which may pass the event
on to one of its child applications, which may in turn pass the
event on down the tree.  Mouse events are generally delivered to
the most deeply nested application whose screen region contains
the mouse coordinates.  However, when the user is dragging or
rubberbanding an object in a particular application, all mouse co-
ordinates go to that application until the dragging or
rubberbanding is completed.  Keyboard events go to the currently
selected application.

To support Toolglass sheets, MMM’s rules for handling trackball
input were modified.  When a sheet is movable, trackball and
thumbwheel events go to the top-level application, which
interprets them as commands to move or resize the sheet,
respectively.  When the sheet is not movable, the trackball and
thumbwheel events are delivered to the selected application,
which interprets them as commands to scroll or zoom that appli-
cation.

Filtering Input Through Lenses and Widgets

llo

World

(a) (b)

Root Application

Toolglass

Graphical Editor

Text Editor
Sheet

He

Figure 13.  A simple hierarchy of applications

Ordinarily, MMM input events move strictly from the root appli-
cation towards the leaf applications.  However, to support the see-
through interface, input events must be passed back up this tree.
For example, figure 13(b) shows an application hierarchy.  The
left-to-right order at the lower level of this tree indicates the top-
to-bottom order of applications on the screen.  Input events are
first delivered to the Toolglass sheet to determine if the user is
interacting with a widget or lens.  If so, the event is modified by
the sheet.  In any case, the event is returned to the root applica-
tion, which either accepts the event itself or passes it on to the
child applications that appear farther to the right in the tree.

The data structure that represents an MMM event is modified in
three ways to support Toolglass sheets.  First, an event is
annotated with a representation of the parts of the application tree
it has already visited.  In figure 13, this prevents the root applica-
tion from delivering the event to the sheet more than once.
Second, an event is tagged with a command string to be
interpreted when it reaches its final application.  For example, a
color palette click-through button annotates each mouse-click
event with the command name ‘‘FillColor’’  followed by a color.
Finally, if the widget contains a lens, the mouse coordinates of an
event may be modified so the event will be correctly directed to
the object that appears under the cursor through that lens.

(b) (c)(a)

Figure 14.  Composing color-changing widgets.

Widgets can be composed by overlapping them.  When a stack of
overlapped widgets receives input (e.g., a mouse click), the input
event is passed top-to-bottom through the widgets.  Each widget
in turn modifies the command string that has been assembled so
far.  For example, a widget might concatenate an additional com-
mand onto the current command string.  In figure 14, a widget
that changes fill colors (figure 14(a)) is composed with a widget
that changes line colors (figure 14(b)) to form a widget that
changes both fill and line colors (figure 14(c)).  If the line color
widget is on top, then the command string would be ‘‘LineColor
blue’’  after passing through this widget, and ‘‘LineColor blue;
FillColor cyan’’  after both widgets. 

Filtering Output Through Lenses and Widgets

Ordinarily, MMM output is composed from the leaf applications
up.  To support lenses, the normal screen refresh composition has
been extended to allow information to flow down and across the
tree as well as up.  For example, if the widgets in figure 13
contain one or more lenses, and if any of those lenses is situated
over the graphical editor, each lens must examine the contents of
the graphical editor (which is the lens’s sibling in the hierarchy) in
order to draw itself.

In addition, to improve performance, MMM applications compute
the rectangular bounding box of the regions that have recently
changed, and propagate this box to the root application, which
determines which screen pixels will need to be updated.
Generally, this bounding box is passed up the tree, transformed
along the way by the coordinate transformation between each ap-
plication and the next one up the tree.  However, lenses can
modify the set of pixels that an operation affects.  A magnifying
lens, for example, generally increases the number of pixels
affected.  As a result, the bounding box must be passed to all
lenses that affect it to determine the final bounding box.

Magic Lens Filters

A Magic Lens filter modifies the image displayed on a region of
the screen, called the viewing region, by applying a viewing filter
to objects in a model.   The input region for the lens is defined by
the viewing region and the viewing filter.  It may be the same size
as the viewing region, or different, as in the magnification lens.
For a 3D model, the input region is a cone-shaped volume defined
by the eye point and the viewing region.  Input regions can be
used to cull away all model objects except those needed to
produce the lens image.  Our current implementations do not
perform this culling; as described below, there are advantages to
lenses that operate on the entire model.

When several lenses are composed, the effect is as though the
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model were passed sequentially through the stack of lenses from
bottom to top, with each lens operating on the model in turn.  In
addition, when one lens has other lenses below it, it may modify
how the boundaries of these other lenses are mapped onto the
screen within its own boundary.  The input region of a group of
lenses taken as a whole can be computed by applying the inverses
of the viewing filters to the lens boundaries themselves.

Our lenses depend on the implementation of Toolglass sheets to
manage the size, shape and motion of their viewing regions.  This
section describes two strategies we have tried for implementing
viewing filters: a procedural method that we call recursive
ambush, and a declarative method that we call model-in model-
out.  We also describe a third method that promises to be
convenient when applicable, called reparameterize-and-clip.
Finally, we discuss issues that arise in the presence of multiple
model types.

Recursive Ambush

In the recursive ambush method, the original model is described
procedurally as a set of calls in a graphics language such as
Interpress12 or PostScript.®1  The lens is a new interpreter for
the graphics language, with a different implementation for each
graphics primitive.  In most cases, the implementation of a given
graphics primitive first performs some actions that carry out the
modifying effect of the lens and then calls the previous
implementation of the primitive.  For example, a lens that
modifies a picture such that all of its lines are drawn in red would
modify the ‘‘DrawLine’’  primitive to set the color to red and then
call the original ‘‘DrawLine’’  primitive.

When lenses are composed, the previous implementation may not
be the original graphics language primitive, but another lens
primitive that performs yet another modification, making
composition recursive.

Recursive ambush lenses appear to have important advantages.
Because they work at the graphics language level, they work
across many applications.  Because they work procedurally, they
need not allocate storage.  However, the other methods can also
work at the graphics language level.  In addition, recursive
ambush lenses have three major disadvantages.  First, making a
new lens usually requires modifying many graphics language
primitives.  Second, debugging several composed lenses is
difficult because the effects of several cooperating interpreters are
hard to understand.  Finally, performance deteriorates rapidly as
lenses are composed because the result of each lens is computed
many times; the number of computations doubles with the
addition of each lens that overlaps all of the others.

Model-In Model-Out

In the model-in model-out (MIMO) method, we make a copy of
the original model as the first step.  This model might be the data
structure of an editor, a representation of graphics language calls,
an array of pixels or some other picture representation.  The
implementation walks through this data structure and modifies it
in accordance with the desired behavior of the lens.  When
composed with other lenses, a MIMO lens takes each model that
is produced by each lens under it, produces a modified version of
that model, and associates it with the clipping region formed by
intersecting its clipping region with that of the lens underneath.
The resulting models are passed on to lenses above.

Although MIMO lenses must allocate storage, this investment
pays off in several ways.  First, during the rendering of a single
image, each lens computes its output models only once, and then
saves them for use by any lenses that are over it.  In addition, if
the computed model is based on the entire original model, then

redrawing the picture after a lens moves is just a matter of
changing clipping regions; no new model filtering is needed.  In
this case, each lens maintains a table of the models it has
produced.  The table is indexed by the models it has received as
input and when they were last modified.  The action of such a lens
often consists of a single table lookup.

MIMO lenses have many other advantages.  Given routines to
copy and visit parts of the model, the incremental effort to write a
MIMO lens is small.  Many of our lenses for graphical editor data
structures were written in under 20 minutes and consist of under
20 lines of code.  Debugging composed lenses is easy because the
intermediate steps can easily be viewed.  Finally, MIMO lenses
can perform a large class of filtering functions because they can
access the input model in any order.  In particular, they can
compute their output using graphical search and replace,16 as
shown in figure 15 where each line segment is replaced by multi-
ple line segments to create a ‘‘snowflake’’  pattern.

(a) (b)

Figure 15.  The snowflake lens.  (a) Two triangles.  (b)
Snowflake lens over part of the scene.

An important variation of MIMO is to allow the output model to
differ in type from the input model.  For example, a lens might
take a graphics language as input and produce pixels as output.  In
this case, the lens walks the original model, rather than copying it,
and allocates data structures of the new model type.

Reparameterize and Clip

If the original image is being produced on the screen by a renderer
with variable parameters, it is easy to implement lenses that show
the effects of varying those parameters.  To function, the lens
modifies a renderer parameter and asks the renderer to redraw the
model clipped to the boundary shape of the lens.  For example, a
lens showing the wireframe version of a 3D shaded model can be
implemented this way.

Several reparameterize-and-clip lenses can be composed if the
parameter changes made by these lenses are compatible.  In the
region of overlap, the renderer re-renders the original model after
each of the overlapping lenses has made its changes to the
renderer parameters.  The flow of control and performance of a
stack of these lenses is like that of MIMO lenses; a new output is
computed for each input region received from lenses underneath.
These lenses differ from MIMO in that each output is computed
from the original model, and each output is always a rendering.

Multiple Model Types

In our discussion above, lenses are used to view a single type of
model, such as a graphical editor data structure or a graphical
language.  In practice, multiple model types are often present, for
two reasons.  First, a lens can overlap multiple applications at the
same time, where the applications have different model types, as
shown above in figure 13.  Second, a lens may overlap both an
application and a lens, where the lens output and application
model are of different types.  For example, in figure 16, the
wireframe lens converts from a 3D model to a 2D line drawing.
The magnifier lens, which operates on 2D drawings, overlaps both
the original image and the output of the wireframe lens.  Rich
illustrations can be produced by permitting lenses to overlap mul-
tiple model types in this way.

Supporting multiple model types requires type conversion and

78



type tolerance. When a lens that expects one type of model as
input is moved over a model of a different type, the system may
automatically convert the model to be of the type required; this is
type conversion.  For example, all of our applications produce
Interpress graphics language calls as part of drawing themselves
on the screen.  When a lens that takes Interpress as input is
positioned over one of these applications, that application
converts its model to Interpress on demand for that lens.

Figure 16.  A bridge made of shaded, 3D blocks showing a
3D wireframe lens and a 2D magnifier.

Alternatively, when presented with a model it does not
understand, a lens can simply pass that model through unchanged;
this is type tolerance.  For example, a lens that operates only on a
graphics editor’s data structures will only modify the image in the
part of that lens’s boundary that overlaps the graphics editor;
other regions are unchanged.

Composing Widgets and Lenses

When a widget and a lens are composed, their functions combine.
For example, consider a click-through button on top of a
magnifying lens.  Mouse events pass through the button, are
annotated with a command, and then pass through the lens, which
applies the inverse of its transformation to the mouse coordinates.
During screen refresh, the widget adds its appearance to the
output of the lens.  If the lens is on top of the widget, input events
are first transformed by the lens and then tested to see if they fall
within the button or not; during refresh, the widget adds its
appearance to the model, which is then acted on by the lens.  A
widget and lens can be very tightly coupled.  For example, an
editing tool could include a lens that displayed control points or
editing handles implemented as widgets.

Performance

Our sheets and lenses are already fast enough to be useful on
current hardware, but need to be faster for smooth motion.  For
example, using our prototype on a SPARCstation 10, we
measured the time it takes to redraw the screen after moving a
wireframe lens of size 70 by 70 pixels over the Penrose tiling of
figure 10, containing 117 filled and outlined shapes.  For the
MIMO implementation of the lens, once it has cached its output
scene, it takes an average of 300 milliseconds to repaint the scene,
of which 120 milliseconds are spent drawing the lens interior.
The same lens implemented using recursive ambush takes %15
longer to redraw the lens interior, which we attribute to the
procedure call overhead of the recursive approach.  Computing
the filtered scene for the MIMO lens takes an average of 480
milliseconds for this example.  This computation is performed
whenever the illustration under the lens is changed or lens
parameters are modified. 

Figure 17.  The Magic Lenses logo.

7. Conclusions

We have described a new style of user interface, the see-through
interface, based on Toolglass widgets and Magic Lens filters. The
see-through interface offers a new design space for user interfaces
based on spatial rather than temporal modes and provides a
natural medium for two-handed interaction.  Because the interface
is movable and overlays the application area, it takes no
permanent screen space and can be conveniently adapted to a
wide range of display sizes.  Because the overlaid tools are
selected and brought to the work area simply by moving the
Toolglass sheet, the user’s attention can remain focused on the
work area.   Because the operations and views are spatially
defined, the user can work without changing the global context. 

The see-through interface provides a new paradigm to support
open software architecture.  Because Toolglass sheets can be
moved from one application to another, rather than being tied to a
single application window, they provide an interface to the
common functionality of several applications and may encourage
more applications to provide common functionality.  Similarly,
Magic Lens filters that take standard graphics languages as input
work over many applications.

In addition to their role in user interfaces, Magic Lens filters pro-
vide a new medium for computer graphics artists and a new tool
for scientific visualization.  When integrated into drawing tools,
these filters will enable a new set of effects and will speed the
production of traditional effects.  Figure 17 shows a magnifying
lens and a wireframe lens used to produce our Magic Lenses logo.  

Integrated into scientific visualization tools, these filters can
enhance understanding by providing filtered views of local
regions of the data while leaving the rest of the view unchanged to
provide context, as was shown in the visualization example in
figure 12.

We hope the see-through interface will prove to be valuable in a
wide variety of applications.  While the examples in this paper
stress applications in graphical editing, these tools can potentially
be used in any screen-based application, including spreadsheets,
text editors, multi-media editors, paint programs, solid modelers,
circuit editors, scientific visualizers, or meeting support tools.
Consider that most applications have some hidden state, such as
the equations in a spreadsheet, the grouping of objects in a graph-
ical editor, or the position of water pipes in an architectural
model.  A collection of widgets and lenses can be provided to
view and edit this hidden state in a way that takes up no
permanent screen space and requires no memorization of com-
mands.

We believe that the see-through interface will increase
productivity by reducing task steps and learning time, providing
good graphical feedback, and allowing users to construct their
own control panels and spatial modes.

8. Plans for Future Work

The see-through interface is a framework that can be used to
create many new tools in many application domains.  Exploring
the current space of possibilities will take many people many
years.  Furthermore, this design space will be enlarged by future
software and hardware.  We will carry out some of this
exploration ourselves, creating new widgets in different applica-
tion domains, working out taxonomies for the tools we discover,
designing new conventions for composing, editing, navigating,
organizing and triggering these tools, combining them with
existing user interface techniques, and testing them on users
performing real work.

We are building two Toolglass widget toolkits.  The first is a
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traditional toolkit in which widgets are created through object-
oriented programming.  The second toolkit is based on our
EmbeddedButtons project;6 here, users draw new widgets and
collections of widgets using a graphical editor and then apply
behavior to these graphical forms, where the behavior is
expressed in a user customization language.

We are designing new algorithms to increase the speed of these
tools.  It is clear that Magic Lens filters and, to a lesser extent,
Toolglass widgets provide a new way to consume the graphics
power of modern computers.

Finally, we are working to better understand how to model and
implement general composition of widgets and lenses, especially
those that work with multiple model and applications types.
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