

About Our New Lifestyle Channel

VIEWPOINT January 2, 2008 (Revised May 30, 2014)

The Long Nose of Innovation¹

The bulk of innovation is low-amplitude and takes place over a long period. Companies should focus on refining existing technologies as much as on creation

by Bill Buxton

In October of 2004, Chris Anderson wrote an article in *Wired* magazine called *The Long Tail*, a theory he expanded upon in his 2006 book, *The Long Tail: Why the Future of Business is Selling Less of More*. In it he captures some interesting attributes of online services, using a concept from statistics which describes how it is now possible for the "long tail" of a low-amplitude population to make up the majority of a company's business. One of his examples came from music: A large quantity of often obscure but nonetheless listened-to music can outperform a much smaller quantity of huge hits. The implications of the phenomenon have been significant for those interested in understanding the meaningful attributes of online vs. brick-and-mortar businesses and the book has apparently had an enormous impact among executives and entrepreneurs.

My belief is there is a mirror-image of the long tail that is equally important to those wanting to understand the process of innovation. It states that the bulk of innovation behind the latest "wow" moment is also low-amplitude and takes place over a long period—but well before the "new" idea has

¹ This is a revised version of the original article. While keeping close to the original text, I have corrected some points of history, added some references, and expanded on a few key points. A link to the original text appears in the footer, below.

http://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek-businessnews-stock-market-and-financial-advice

become generally known, fully refined, much less reached the tipping point where it becomes widely adopted. It is what I call *The Long Nose of Innovation*.

A MOUSE FAMILY TREE

As with the Long Tail, the low-frequency component of the Long Nose may well outweigh the later highfrequency and (more likely) high-visibility section in terms of dollars, time, energy, and imagination. Think of the mouse. First built in around 1965 by William English and Doug Engelbart at the Stanford Research Institute (SRI), it was publicly demonstrated to wide acclaim in 1968², and within a year had been duplicated (with Engelbart and English's assistance) in at least two locations: the National Research Council of Canada and the University of Geneva. Then, in 1973, Xerox PARC adopted the mouse for their prototype Alto Computer, on which the foundations of the Graphical User Interface were laid.

What is significant and little known is that the mouse was independently "invented" in Germany, by Rainer Mallebrein of Telefunken, and was shipped with the Telefunken TR86 computer in 1968 – at almost exactly the same time as the famous Engelbart demo, five years before Xerox PARC adopted the mouse, and fully sixteen years before the 1984 launch of the first computer to bring the mouse to the broader public's attention – the first Macintosh. And yet, even then, it was not until 1995, with the release of Windows 95, that the mouse became ubiquitous.³

On the surface it might appear that the benefits of the mouse were obvious—and therefore it's surprising it took 30 years to go from first demonstration to mainstream. But this 30-year gestation period turns out to be more typical than surprising.

UNDERSTANDING IMMATURE TECHNOLOGIES

In 2003 my then office mate at Microsoft, Butler Lampson, presented a report to the Computer Science and Telecommunications Board of the National Research Council in Washington which traced the history of a number of key technologies driving the telecommunications and information technology sectors.⁴ The report analyzed each technology (time-sharing, client/server computing, LANs, relational databases, VLSI design, etc.) from first inception to the point where it turned into a billion dollar industry. What was consistent among virtually all the results was how long each took to move from inception to ubiquity. Twenty years of refinement of the idea, including jumping around from university labs to corporate labs to products was typical. And 30 years, as with the mouse and RISC processors, was not at all unusual (and remember, this is the "fast-paced world of computers," where it is "almost impossible" to keep up). In my own career, we were doing capacitive multi-touch at the University of Toronto in 1984, published in the open literature in 1985, and yet it took another 22 years of refinement, by many contributors,

³ For a more detailed chronology of the mouse, as well as some other input devices, see: <u>http://www.billbuxton.com/inputTimeline.html</u>

http://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek-businessnews-stock-market-and-financial-advice

² http://sloan.stanford.edu/mousesite/1968Demo.html

⁴ For this report and a related predecessor (both available for free download) see: Committee to Study High Performance Computing and Communications (1995). *Evolving the High Performance*

<u>Computing and Communications Initiative to Support the Nation's Information Infrastructure</u>. Washington DC: The National Academies Press.

Computer Science and Telecommunications Board of the National Research Council (2003). <u>Innovation in</u> <u>information technology</u>. Washington DC: The National Academies Press.

before the technology "popped up" above the radar, with the 2007 launch of the Apple iPhone and Microsoft Surface. 5

What the Long Nose tells us is that any technology that is going to have significant impact in the next 10 years is already at least 10 years old. Any technology that is going to have significant impact in the next 5 years is already at least 15 years old, and likely still below the radar. Hence, beware of anyone arguing for some "new" idea that is "going to" take off in the next 5 years, unless they can trace its history back for 15.⁶ If they cannot do so, most likely they are either wrong, or have not done their homework

If we briefly revisit the mouse, for example, it is important to understand that it didn't matter that most people who saw it knew immediately that it was a good idea. It didn't matter that the benefits could be demonstrated. It still wasn't ready for prime time. Not only did the mouse need to be refined, so did practically the entire ecosystem required to exploit its potential: the components of the graphical user interface, graphics displays and processors, applications, operating systems, etc. One generally needs a "perfect storm", created by the maturing of all of the key components of the ecosystem, before any "invention" reaches the tipping point of broad adoption.

REWARDING THE ART OF REFINEMENT

The Long Nose redirects our focus from the "Edison Myth of original invention", which is akin to an alchemist making gold. It helps us understand that the heart of the innovation process has far more to do with prospecting, mining, refining, goldsmithing, and of course, financing.

Knowing how and where to look for gold, and recognizing it when you find it is just the start. The path from staking a claim to piling up gold bars requires long-term investment, and many players. And even then, the full value is only realized after the skilled goldsmith has crafted those bars into something worth much more than their weight in gold.

Too often, universities try to contain the results of research in the hope of commercially exploiting the resulting intellectual property. Politicians believe that setting up tech-transfer incubators around universities will bring significant economic gains in the short or mid-term. It could happen. So could winning the lottery. I just wouldn't count on it - unless the overall program and expectations are designed to appropriately reflect the time-line of the Long Nose. A good place to start might be to appropriately diversify our investment over the entire base of the Long Nose, from tip to base – and accord as much prestige and reward to those who focus on the process of refinement and augmentation as to those who came up with the initial creation.

⁵ The notion of new discoveries being based on previous ones has a long history. In the 12th century Bernard of Chartres wrote about standing on the shoulders of giants, as did Newton in the 17th century. For an eloquent articulation of how "new" technologies typically evolve from new combinations of existing sub-assemblies, see: Arthur, W. Brian (2009). *The Nature of Technology: What it is and how it evolves*. New York: Free Press. ⁶ While it may appear that things moving ever faster today, and the length of the nose shortening, this has more to do with the quantity of things moving slowly than a change in the length of the nose of any single technology. By sheer virtue of combinatorics, there is more change. But the nose of today's "hot new thing" is just as long today as it was in our grandparent's time.

To my mind, at least, those who can shorten the nose by 10% to 20% make at least as great a contribution as those who had the initial idea. And if nothing else, long noses are great for sniffing out those great ideas sitting there neglected, just waiting to be exploited.

Bill Buxton is Principal Scientist at Microsoft Research and the author of Sketching User Experiences: Getting the Design Right and the Right Design. Previously, he was a researcher at Xerox PARC, a professor at the University of Toronto, and Chief Scientist of Alias Research and SGI Inc.